
MATH 245 S18, Exam 1 Solutions

1. Carefully define the following terms:
(
a
b

)
, floor, Commutativity theorem (for propositions), Distributivity theorem

(for propositions).

The binomial coefficient is a function from pairs a, b of nonnegative integers, with a ≥ b, to N, given by a!
b!(a−b)! .

Let x ∈ R. The floor of x is the unique integer n that satisfies n ≤ x < n+ 1. The Commutativity theorem states
that for any propositions p, q, that p ∨ q ≡ q ∨ p and p ∧ q ≡ q ∧ p. The Distributivity theorem states that for any
propositions p, q, r, that p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

2. Carefully define the following terms: Addition semantic theorem, Disjunctive Syllogism semantic theorem, contra-
positive (proposition), predicate.

The Addition semantic theorem states that for any propositions p, q: p ` p∨q. The Disjunctive Syllogism theorem
states that for any propositions p, q: (p ∨ q),¬p ` q. The contrapositive of conditional proposition p → q is the
proposition (¬q) → (¬p). A predicate is a collection of propositions, indexed by one or more free variables, each
drawn from its domain.

3. Prove or disprove: For all n ∈ N, (n− 1)!|(n + 1)!.

The statement is true. Applying the definition of factorial twice, we get (n+ 1)! = n!(n+ 1) = (n− 1)!(n)(n+ 1).
Since n(n + 1) is an integer, applying the definition of “divides”, we conclude that (n− 1)!|(n + 1)!.

4. Prove or disprove: For all odd a, b, a+b
2 is even.

The statement is false. To disprove, we need one specific counterexample, such as a = 1, b = 1, which are odd
(since 1 = 2 · 0 + 1) for which a+b

2 = 2
2 = 1, which is not even (since there is no integer we can multiply by 2 to

get 1).

5. Let p, q be propositions. Prove or disprove: (p ↓ q)→ (p ↑ q) is a tautology.

Because the fifth column of the truth table (to the right)
is all T , the statement is a tautology.

p q p ↓ q p ↑ q (p ↓ q)→ (p ↑ q)
T T F F T
T F F T T
F T F T T
F F T T T

6. Without using truth tables, prove the Destructive Dilemma theorem, which states: Let p, q, r, s be arbitrary propo-
sitions. Then p→ q, r → s, (¬q) ∨ (¬s) ` (¬p) ∨ (¬r).

Due to the hypothesis that (¬q)∨ (¬s), we consider two cases. If ¬q is T , we combine this with p→ q and modus
tollens to conclude ¬p. By applying addition, (¬p) ∨ (¬r). If, instead, ¬s is T , we combine this with r → s and
modus tollens to conclude ¬r. By applying addition, (¬p) ∨ (¬r). In both cases, (¬p) ∨ (¬r).

7. Let x ∈ R. Prove that if 2x /∈ Q, then 3x + 1 /∈ Q.
We use a contrapositive proof. Assume that 3x+1 ∈ Q. Hence, there are a, b ∈ Z with b 6= 0 such that 3x+1 = a

b .

We subtract one from each side to get 3x = a−b
b . We then multiply both sides by 2

3 to get 2x = 2a−2b
3b . Now,

2a− 2b, 3b are integers, and 3b 6= 0, so 2x ∈ Q.

8. Let p, q, r, s be propositions. Simplify ¬(((p→ q)→ r) ∧ s) as much as possible (where no compound propositions
are negated).

We first apply De Morgan’s law to get (¬((p → q) → r)) ∨ (¬s). Next we apply Theorem 2.16 (negated condi-
tional interpretation) to get ((p → q) ∧ (¬r)) ∨ (¬s). Alternatively, we apply conditional interpretation to get
(¬(¬(p→ q)∨ r))∨ (¬s), then De Morgan’s law to get ((¬(¬(p→ q)))∧ (¬r))∨ (¬s), then double negation to get
((p→ q) ∧ (¬r)) ∨ (¬s).

9. Fix our domain to be R. Simplify ¬(∃y ∀x ∀z (x < y)→ (x < z)), as much as possible (where nothing is negated).

We first move the negation inward, getting ∀y ∃x ∃z ¬((x < y)→ (x < z)). Next we apply Theorem 2.16 (or con-
ditional interpetation, De Morgan’s law, and double negation) to get ∀y ∃x ∃z (x < y)∧¬(x < z) ≡ ∀y ∃x ∃z (x <
y) ∧ (x ≥ z).

10. Prove or disprove: ∃x ∈ R ∀y ∈ R, |y| ≤ |y − x|.
The statement is true. We need to find a specific example of x which will work for all y; the only one that works
is x = 0. Now, let y ∈ R be arbitrary. |y| = |y − 0| = |y − x|, so |y| ≤ |y − x| is true.


