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10.

MATH 245 S18, Exam 1 Solutions

Carefully define the following terms: (‘;), floor, Commutativity theorem (for propositions), Distributivity theorem
(for propositions).

The binomial coefficient is a function from pairs a,b of nonnegative integers, with a > b, to N, given by ﬁib)!.
Let z € R. The floor of = is the unique integer n that satisfies n < x < n+ 1. The Commutativity theorem states
that for any propositions p, g, that pV ¢ = ¢V p and p A ¢ = g A p. The Distributivity theorem states that for any
propositions p,q,r, that pA (gVr)=(pAq)V(pAr)and pV (gAr)= (Vg A(pVr).

Carefully define the following terms: Addition semantic theorem, Disjunctive Syllogism semantic theorem, contra-
positive (proposition), predicate.

The Addition semantic theorem states that for any propositions p,q: p F pV¢. The Disjunctive Syllogism theorem
states that for any propositions p,q: (pV q),—p F g. The contrapositive of conditional proposition p — ¢ is the
proposition (—¢) — (—p). A predicate is a collection of propositions, indexed by one or more free variables, each
drawn from its domain.

Prove or disprove: For all n € N, (n — 1)!|(n + 1)!.
The statement is true. Applying the definition of factorial twice, we get (n+ 1) =nl(n+1) = (n— D!(n)(n + 1).
Since n(n + 1) is an integer, applying the definition of “divides”, we conclude that (n — 1)!|(n + 1)!.

a+b

Prove or disprove: For all odd a,b, *5> is even.

The statement is false. To disprove, we need one specific counterexample, such as ¢ = 1,b = 1, which are odd
(since 1 = 2-0+4 1) for which “TH’ = % = 1, which is not even (since there is no integer we can multiply by 2 to
get 1).

Let p, g be propositions. Prove or disprove: (p | q) = (p 1 ¢) is a tautology.

Because the fifth column of the truth table (to theright) P ¢ plgqg pTtg (lg—= (149
is all T, the statement is a tautology. T T F F T

T F F T T

F T F T T

F F T T T

Without using truth tables, prove the Destructive Dilemma theorem, which states: Let p, ¢, r, s be arbitrary propo-
sitions. Then p — ¢,7 — s, (—q) V (=s) F (=p) V (—r).

Due to the hypothesis that (—¢q) V (—s), we consider two cases. If —¢ is T', we combine this with p — ¢ and modus
tollens to conclude —p. By applying addition, (—p) Vv (—r). If, instead, —s is T, we combine this with r — s and
modus tollens to conclude —r. By applying addition, (—p) V (—=r). In both cases, (—p) V (—r).

Let z € R. Prove that if 2z ¢ Q, then 3z + 1 ¢ Q.
We use a contrapositive proof. Assume that 3z +1 € Q. Hence, there are a,b € Z with b # 0 such that 3z +1 = 3.
We subtract one from each side to get 3z = anb. We then multiply both sides by % to get 2z = 2“377)%

2a — 2b, 3b are integers, and 3b # 0, so 2z € Q.

. Now,

Let p, q,r, s be propositions. Simplify =(((p — ¢) — r) A s) as much as possible (where no compound propositions
are negated).

We first apply De Morgan’s law to get (—((p — ¢q) — r)) V (—s). Next we apply Theorem 2.16 (negated condi-
tional interpretation) to get ((p — ¢q) A (—r)) V (—s). Alternatively, we apply conditional interpretation to get
(=(=(p = q) V7)) V (—s), then De Morgan’s law to get ((—(—(p = q))) A (—r)) V (=s), then double negation to get
(0= @) A (=) V (=)

Fix our domain to be R. Simplify =(Jy Va Vz (z < y) — (« < 2)), as much as possible (where nothing is negated).
We first move the negation inward, getting Yy 3= 3z =((z < y) — (z < 2)). Next we apply Theorem 2.16 (or con-
ditional interpetation, De Morgan’s law, and double negation) to get Vy 3z 3z (z < y)A—(x < z) =Vy Jz Iz (x <
YA (z = 2).

Prove or disprove: 3z €e R Vy € R, |y| < |y — z|.
The statement is true. We need to find a specific example of x which will work for all y; the only one that works
is x = 0. Now, let y € R be arbitrary. |y| = |y — 0] = |y — z|, so |y| < |y — z| is true.



